SENIOR PLANET

Air Quality
Monitoring
by Citizen
Scientists

Karen Donoghue and Craig Newell

Hello! We're Karen & Craig

Long careers in tech biz

Agenda

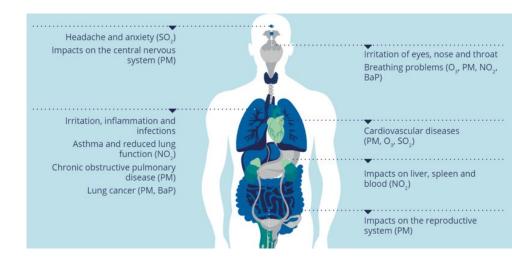
- Air quality is important
- You can't manage what you can't measure
- You can participate in understanding your air quality

Karen Donoghue and Craig Newell

Why is air quality important?

Why monitor your air quality?

- Health impacts for individuals
- Community wide impacts


By Mike Lee, E&E News on June 20, 2023

Human Health Impacts...

- Air pollution accounts for more than 1 in 8 deaths globally
- Air pollution contributed to 8.1 million deaths in 2021
- Air pollution is the 2nd leading risk factor for early death, surpassed only by high blood pressure
- Air pollution currently shortens the average person's lifespan by 1 year and 8 months

Source: EU

The effects are still being understood

Stories from the **Environmental Factor** (NIEHS Newsletter):

- Outdoor air pollution may be linked to uterine cancer in U.S. women (June 2024)
- Air Pollution May Trigger DNA Modifications Tied to Alzheimer's Disease (April 2024)
- Scientific Journeys: Using AI to Track a Major Source of Pollution (March 2024)
- Indoor Wood-burning May Be Linked to Lung Cancer in U.S. Women (September 2023)
- Everyday Air Pollution Can Harm Brain Development in Adolescents (September 2023)
- Wildfire Smoke, Other Air Pollution Can Harm Brain Health, Expert Says (August 2023)
- Air Pollution and Forever Chemicals **Continue to Pose Health Risks** (March 2022)
- Air Pollution Affects Children's **Brain Structure** (February 2022)
- Increasing Evidence Links Air Pollution With Breast Cancer (November 2021)
- Fine Particulate Air Pollution Associated With Higher **Dementia Risk** (September 2021)

Air Quality is no longer improving

Clean Air Act

- Efforts starting in the 1960s have made a huge impact in North America
- <u>Improvements</u> have stalled after easy wins

Fires

- Affecting people <u>everywhere</u>
- No longer just "wildfires" (towns and cities)

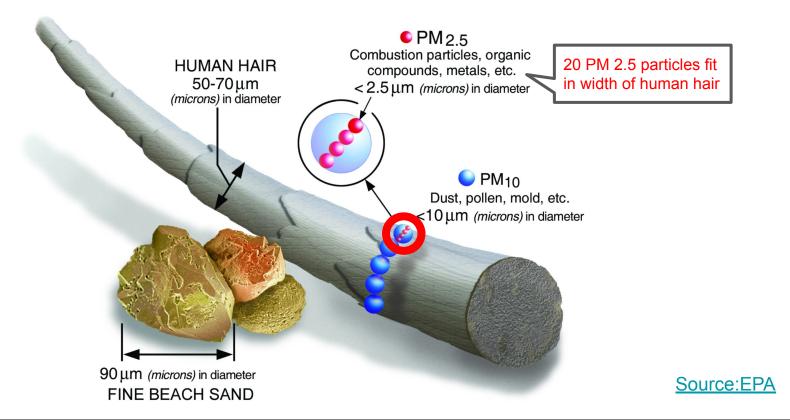
Drought

Pollutants from the <u>Great Salt Lake</u>

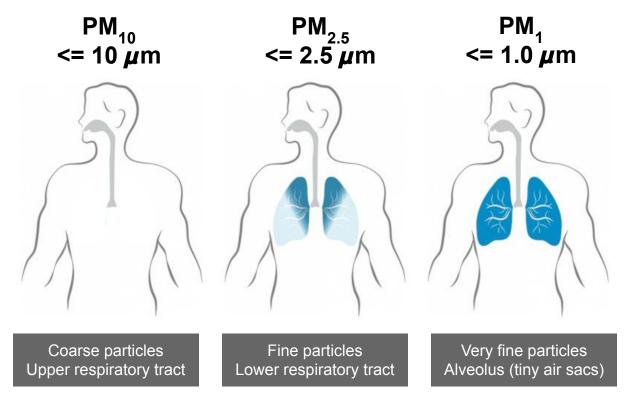
What exactly is the air that we breathe?

What is Air?

Mixture of gases


- 99% Nitrogen and Oxygen
- Moisture
- Aerosols (Suspended particles)

Volume of the Most Abundant Gases in Our Atmosphere						
Gas	Volume in Parts Per Million (ppm)	Percent	Atomic Symbol	Bond		
Nitrogen	780,840 ppm	78.0840%	N ₂	triple		
Oxygen	209,460 ppm	20.946%	02	double		
Argon	9,340 ppm	0.934%	Ar	none		
Carbon dioxide	400 ppm*	0.040%*	CO ₂	double		
Neon	18.18 ppm	0.001818%	Ne	none		
Helium	5.24 ppm	4 ppm 0.000524% He		none		
Methane	1.79 ppm	0.000179%	CH₄	single		
Krypton	1.14 ppm	0.000114%	Kr	none		
Water vapor	40,000 ppm	0 to 4%	H ₂ 0	single		


Measuring gases is difficult

- Technically, it is really difficult to measure gases
- The sensors that do exist and expensive and require frequent recalibration or replacement
 - For example, CO₂ sensors used for indoor measurement require exposure to "outside air" every 3-4 weeks to recalibrate
- A lot of outdoor air quality monitoring focuses on aerosols or suspended particulate matter (PM)

What is particulate matter (PM)?

What do we measure?

Source: © Encyclopédie de l'Environnement

How does PM relate to health impact?

Every country has created a health impact index for Air Quality including PM (e.g. US EPA AQI shown below)

Daily AQI Color	Levels of Concern	Values of Index	Description of Air Quality
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.
Purple	Very Unhealthy	201 to 300	Health alert: The risk of health effects is increased for everyone.

Health triggers vs. Long term exposure

The human impact can be:

- Concentrations triggering symptoms (acute exposure)
 - Asthma attacks
- Long-term health impact (chronic exposure)
 - Reduced lung capacity
 - High blood pressure
 - Primary focus of medical research and governmental monitoring

Where should we monitor?

Where to measure?

To best understand health impact, a personal "dosage meter" would be optimal but inconvenient:

- Plume Flow
- Underground Mining

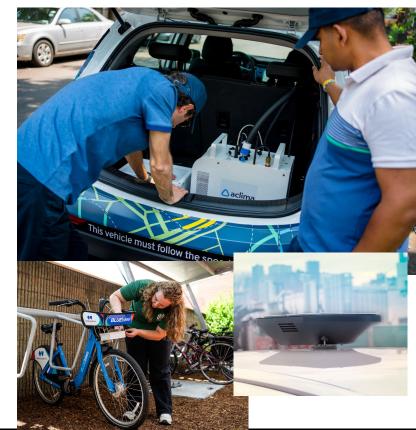
Monitoring at Fixed Locations

Near places where people spend time

- Home
- Office
- School

Access to power and communications

 Almost all air quality monitoring is at fixed sites



What is between fixed monitors?

But how to understand the space between fixed sensors?

- Mount sensors on things that move
 - Vehicles
 - Google Maps Street
 View cars
 - Even bicycles

Positioning Practicalities

Where to place a sensor?

- Isolated field as per weather sensors
- Sides of buildings are convenient
 - Watch for exhaust air (dryer vents, kitchen exhaust, HRV exhaust)
 - Where people hang out (smokers, vapers)

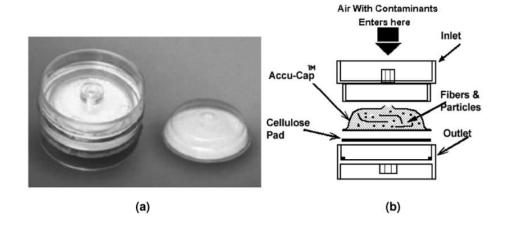
How is air quality measured?

Reference air quality monitoring = big and expensive

Classic air quality monitoring

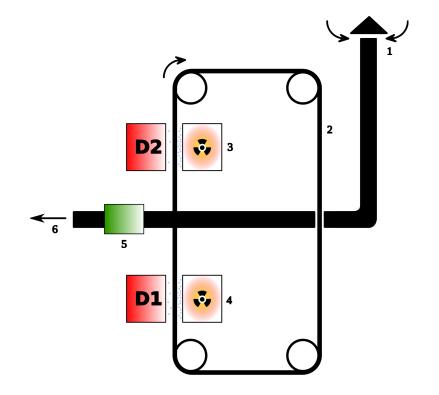
Expensive to buy and operate

- Regular maintenance
- Regular calibration



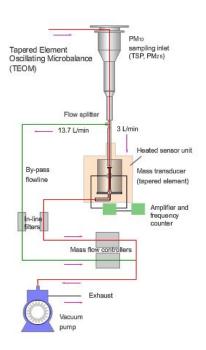
Many alternatives to measure Particulate Matter (PM)

- (\$\$\$) Gravimetric
 - Batch process to weigh filter before and after air is blown in
- (\$\$\$) Beta-ray absorption (BAM)
 - Nuclear radiation absorption
- (\$\$) Tapered element oscillating microbalance (TEOM)
 - A continuous system of weighing particles
- (\$) Laser Particle Counting
 - Fire a laser through the air and count the interruptions
- (\$) Light scattering
 - Measure visual haze at a small scale

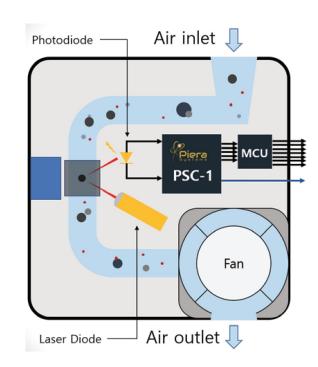

Gravimetric Measurement

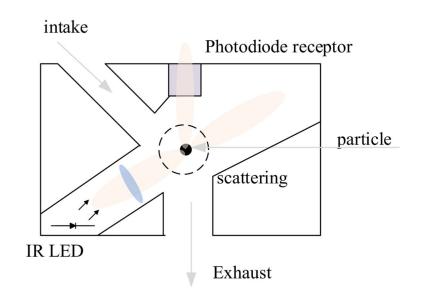
- Gold standard
- Labor intensive
- Further analysis of physical & chemical composition possible

Beta-ray Absorption (BAM)

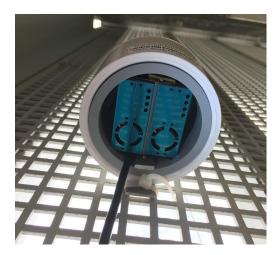

- "Fun with radiation"
- Beta-rays absorbed proportionally to mass not size.

Tapered element oscillating microbalance (TEOM)

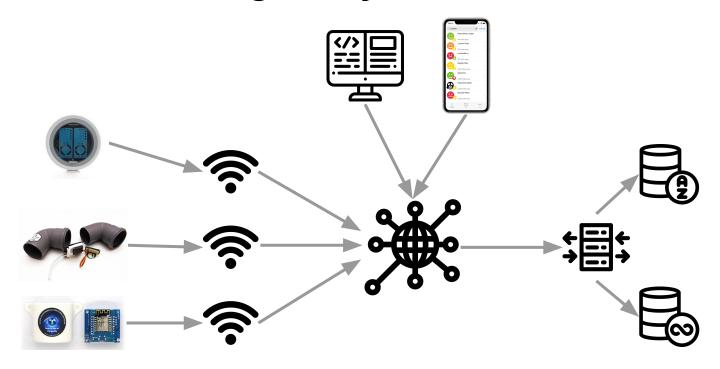

- Practical outside the lab.
- Does not have to be a huge machine

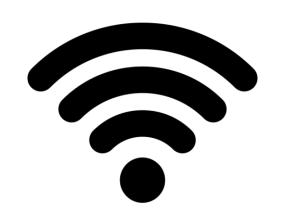

With advances in solid state technology and ICs

- Count individual particles in the air giving both number and size
- Size distributions are correlated with source


Light scattering

- The "lowest cost" approach
- Poorest quality data


The rise of low cost PM sensors



Basic Data Gathering IoT System

Basic IoT system has devices connected across a network, a database and application server

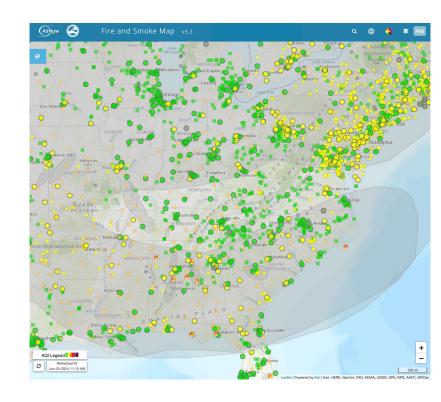
Communication to the cloud

WiFi as almost everyone has it without extra costs

SENSOR.COMMUNITY

When should we monitor?

All the time...


To understand long term exposure

Measure all the time and at as many places as possible

- However this is not really practical...

Fires becoming more frequent and widespread

- PM sensors can serve as an early warning system as smoke often spreads well ahead of heat
- Low-cost sensors are being incorporated into smoke forecasting:
 - AirNow <u>Fire and Smoke Map</u>
 - <u>FireSmoke</u> Canada

When fires come to sensors...

- Public Safety Power Shutdowns (PSPS)
 - Sensors go offline when power is turned off and internet fails

 Monitoring after files often difficult due to long term lack of power and connectivity

After the fire...

Long after the particulate matter (PM) clears:

 Unlike general air pollution where the gases are correlated with PM

 Burnt structures, vehicles, etc.
 off-gas many things that are still being understood Los Angeles Daily News

⊥ ∨ Q

NEWS > HEALTH · News

Air quality is still bad in fire-ravaged areas, despite today's green AQMD map

Los Angeles County firefighters put out a hotspot along the 100 block of Altadena Drive during the fight against the Eaton fire in Altadena on Friday, Jan. 10, 2025. (Photo by Keith Birmingham, Orange County Register/ SCNG)

Who is interested in air quality?

Consumers that are also citizen scientists

CRAIG / Persona role: Air quality enthusiast

HUMANLOGIC

Job title: Engineer

> **Gender, age, location** M, 44, Boston, MA USA

Preferred channels Email, SMS, web, mobile Example quote

"I want to be able to see, understand and analyze my local air quality sensor data." Key characteristics Very technical

Favorite brands

Frustrations	& pa	in poir	nts
--------------	------	---------	-----

Concerned about local air quality

Can't find DIY AQ sensor to buy

Family member with asthma

Motivations & key influences

Interested in the rise of low-cost sensors and their ability to quantify air quality

Reads EPA scientific reports on air quality

Goals & needs

Wants to understand about AQ data and the ability to have confidence in sensor readings

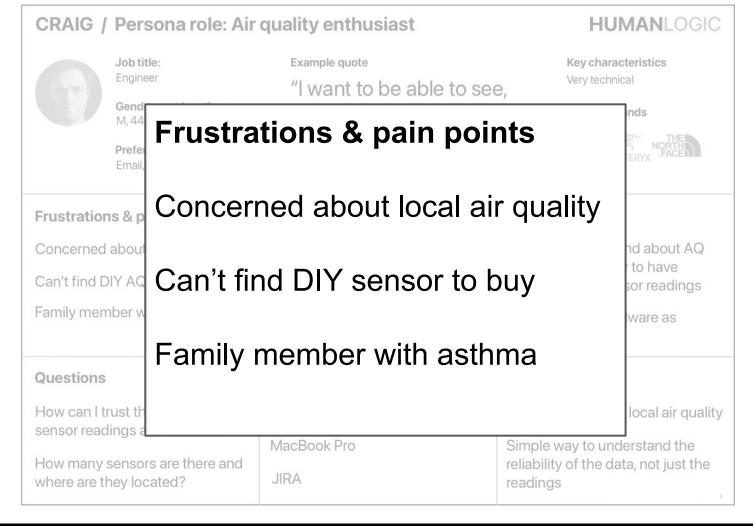
Will build own hardware as required

Questions

How can I trust that the AQ sensor readings are accurate?

How many sensors are there and where are they located?

Applications used in work & life iPhone X and iPad Pro


MacBook Pro

JIRA

Feature requests

iOS app to monitor local air quality

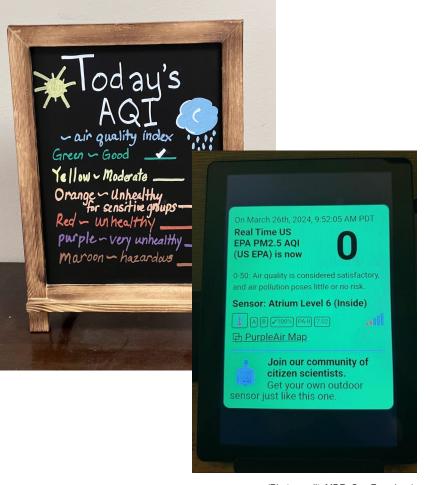
Simple way to understand the reliability of the data, not just the readings

Citizen scientists monitoring air quality

Example motivations to monitor air quality:

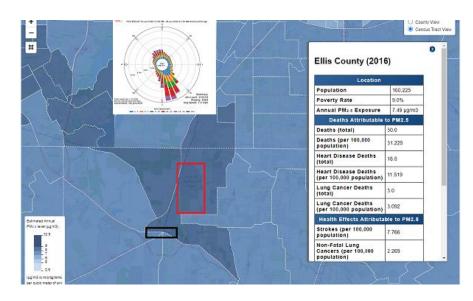
- Living in an RV while avoiding wildfires
- Urban living in a retirement community
- Citizen scientist advocacy groups understanding local pollution sources
- Wildfire early warning

RV (Recreational Vehicle) living


Using air quality
 monitoring as a
 "compass" to find
 locations with "good air"
 in wildfire-prone areas

All photos by Dr. Jiahong Juda.

Urban retirement community


- Sharing knowledge about air quality in a residential Continuing Care Retirement Community (CCRC) in San Francisco
- 350 residents

(Photo credit: MDR, San Francisco)

Citizen scientist advocacy groups monitoring air quality

- Community advocacy providing transparency in government AQ monitoring of a cement factory in Midlothian, Texas
- Established a citizen network of air quality sensors to share data

Local Haze crowdsources air quality sensor readings worldwide and rates sensor accuracy

© Local Haze

LOW COST SENSORS

EXPENSIVE SENSORS

Data Sources

13319 sites (i)

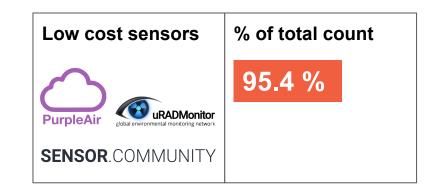
SENSOR.COMMUNITY

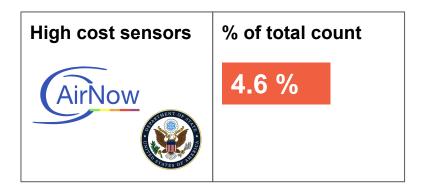
10961 sites (i)

1448 sites (i

46 sites (i)

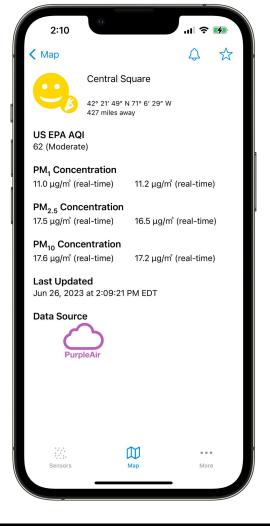
465 sites (i)




Total Active Sensors

32,239 sites

Design Challenge: Ranges of data quality and volume


- Large disparity in the volume and quality of data
- Lots of low quality data vs. a very small amount of high quality data
- UX presentation challenge to communicate the quality of the data, not just the value

Visual language

Design challenges

- What's the correct way to notify for a specific AQ sensor?
- Filtering frequent notifications
- Should notifications remain persistent or should they be ephemeral? (i.e. fade away)

O Local Haze

Preview: Air quality data on a watch form factor

O Local Haze

Consumers can easily understand their local air quality "on the go"

Contact: LOCALHAZE@HUMANLOGIC.COM

App Store feedback from Local Haze users:

"The graphics are simple and the features are few, but what it does, it does very well. Here in Northern California, that is critical."

"Local Haze offers a simple app to view PM 1, 2.5, and 10 data as well as AQI readings."

"Combines data from various sensors. Fast and easy to use."

Key takeaways

- Air quality is important
- You can't manage what you can't measure
- You can participate in understanding your air quality

Please submit questions via chat